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Abstract—The equation-based approach to process analysis is necessary for efficient optimization of
large and complex processes, and involves the problem of solving a large number of equations. To comple-
ment this approach, an improved equation-solving system using the functional matrix suggested by Mattione,
Meir and Book was developed, and its capacity for the process analysis was demonstrated by case studies.

The equation-solving system developed in this work reads equations, stores them in the functional
matrix, rearranges them, and, if they have degrees of {reedom, selects design variables which make each par-
tition the easiest to solve. Given the values of the design variables, the system solves the equations as it mani-

pulates the functional matrix.

The developed equation-solving system was proved to be efficient for solving a large number of equations
which involve degrees of freedom. Case studies show rhat the methodology established in this wark is an
appropriale basis for the equation-based analysis of large chemical processes.

INTRODUCTION

The most promising approach to process analysis is
the two tier approach, in which the equation-based ap-
proach with simple models and the sequential modu-
lar approach with rigorous models are used together.
This approach was represented by Rosen [1], Evans
[2], et al. The objective of this study is to present a
computational basis for the equation-based analysis in
the two tier approach.

One of the most important jobs in chemical process
design is solving large sets of process-modeling equa-
tions. The set of equations to be solved usually consists
of both linear and nonlinear equations, and is very
sparse when represented in matrix form. The total
system of equations, if possible, must be partitioned
into subsystems of equations so that the computational
difficulty in equation-solving may be minimized.

Algorithms for partitioning systems with no de-
grees of freedom were given by Steward [3] [4], Sar-
gent and Westerberg [5], Himmelblau [6], Tarjan [7],
et al. Results of these algorithms are the same, i.e. they
give the complete partitions.

A set of equations modeling a process always con-
tains more variables than equations. It is a very impor-
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tant problem which variables to set to constants,
because the configuration of the partitioned set of
equations with zero degree of freedom may critically
vary with the set of design variables. Algorithms for
rearranging equations and selecting design variables
were given by Lee, Christensen and Rudd (8], Edie
and Westerberg [9], Ramirez and Vestal [10], Book
and Ramirez [11] [12], et al.

In previous work, the occurrence matrix in which
an element represents just the occurrence of a variable
in an equation was being used in order to express the
structure of a set of equations. Then, Mattione, Meir
and Book [13] presented a type of occurrence matrix,
called the functional matrix, in which an element
represents not only the occurrence but also the func-
tional form of a variable in an equation. Book and
Ramirez [12] made use of the functional matrix in
their equation-ordering and variable-grouping algo-
rithm,

After partitioning, the tearing, which is another
method for reducing the computational difficulty, can
be applied to each partition, so that the solution of sub-
systems of equations can be jterated. Algorithms for
tearing were given by Steward 2], Christensen [14], et
al., but not discussed here,



Equation-Based Analysis of Large Chemical Processes 155

Table 1. Defined functional forms.

r?;?i)gn' Functional form Equation form
A Linear Cix +fx) =0
B Product Cixi%y %, + fx)=0
D  Reciprocal Cil(xy+Cy) + flx)=0
E  Exponential Ciexp (Coxy) + flx) =0
G Hyperbolic tangent C,tanh (x; + C,) + fx) = 0
H  Hyperbolic sine Cysinh (x; + Cy) + flx) == 0
L Natural logaritbm  Ciln (x; + C,) + f(x) = 0
M Common loganthm Cilog {x; + Cp) + fix} = 0
N Cubic Colx + C2)3 +fx)=0
O Square root Cix;+Cy+fle)=0
P Power Cix,Cy +f(x) =0
R Fourth order Cilx;+Cyt +f(x) =0
S Square Cplxy+ Cz)z +fx)=0
T  Tangent Citan (x; + Co) + f(x) = 0
U  Sine Cysin (x) + Co) + flx) = 0
V  Cosine Cieos (x1 + Co) + flx) =0
W  Hyperbolic cosine  Cicosh(x; + C5) + fx) = C

EQUATION-SOLVING METHODOLOGY

Functional Matrix

An element of the functional matrix represents the
function formed by a variable in an equation. The fun-
ctional form which can appear in an equation is de-
fined as shown in Table 1, where f(x) is a function of
variables other than explicit ones in the equation. An
element which is designated by a letter after ‘p’ in-
volves multiple roots.

The row-oriented column-linked list is used in
order to store the functional matrix. Elements in the
topmost row are stored contiguously in the memory in
the increasing order of their column numbers, and
those in the next row, etc. Elements in each column
are linked from top to bottom. A record for an element
node contains fields for the code representing *he func-
tional form and the constants specifying the function,
as shown in Fig. 1. Fields for the mark and ‘he Jaco-
bian matrix are used only while the functional matrix
is being used for equation-solving.

A type of circular list is used in order to express the
product of variables. The code is used as the link. If the
value of code of an element is positive, it corresponds
to the element number of the multiplied variable. The
code of the multiplied element is the element number
of the next multiplied variable, etc. The code of the last
multiplied element is the element number of the first

IRowl()olumrlColumn-]inlll Code] c, Ez [Mmkl]acobian

Fig. 1. Contents of an element node.

variable in the product, so the elements are circularly
linked. The product is evaluated by tracing the link
with the visited nodes being marked.

Functional forms other than the product of vari-
ables are represented by nonpositive code values. Fig.
2 shows an example of the functional matrix, which
contains the same equations that were used for an ex-
ample by Mattione, Meier and Book [13].
Equation-Ordering and Partitioning

An equaticn which contains only one variable can
be solved first. Therefore, such an equation is put to
the topmost row, and its variable is put to the leftmost
column. Then, its row and column are eliminated
from the original matrix. The same work is repeated
until such an equation is not found.

If a variable appears in only one equation, the
equation which contains that variable can be solved
after all the other equations are solved. Therefore,
such an equation is put to the bottommost row, and
such a variable is put to the rightmost column. Then,
the row of that equation and the column of that vari-
able are eliminated from the original matrix. The same
work is repeated until such a variable is not fcund.

If there are remaining equations in the original
matrix, the equation with the minimum number of
variables is put to the topmost erapty row [15). If there
are several candidates, the one with which the max-
imum number of elements are to be eliminated is sele-
cted. Then, its original row and columns are elimi-
nated. The same work is repeated for the remaining

Equation

Number

X4+ XgX3-3 Xoxg=7 5
4Inx3-2x54.5=0 3

Row Eq Col Var Eq Row Const Var Col

1 5 1 4 1 1
2 3 2 6 2 2 4
3 3 3 3 3 3
4 4 2 4 2 4] 4 1
5 5 5 5 1 7 5 5
6 6 6 6 2
{ Column pointer
1 2 | 3 4 3
Wi

Row pointer 7

6

Fig. 2. Structure of the functional matrix.
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equations. This is a heuristic method which does not
guarantee the most small-sized partitions, and is a sim-
ple method which does not involve any serious combi-
natorial problem.

After all the equations are ordered, the rearranged
matrix is partitioned. Conventionally, the partition is
defined as the smallest subsystem of equations. Here,
contiguous unit partitions are so assembled that they
compose a trapezoid or triangular partition as shown
in Fig. 5. The size of partition is defined as the number
of equations that must be solved simultaneously in the
partition.

Design Variable Selection

After partitions are determined, proper design vari-
ables are selected so that each partition with degrees of
freedom may become the easiest to solve. In previous
work using the occurrence matrix, any situation that
all the equations can be solved sequentially was the
most preferred one. Here, an objective function to be
minimized is used, which was used by Book and
Ramirez [12] during the equation-ordering. It is as
follows.

1. Equations that can be solved sequentially giving a
single root vector

2. Linear simultaneous equations

3. Equations that can be solved sequentially giving
multiple root vectors

4. Nonlinear simultaneous equations

The equation-solving system selects outpul variables

involving multiple roots in a trapezoid partition for

design variables, if that selection gives a set of linear

simultaneons equations. If there is a partition of simul-

taneous equations with some degrees of freedom, the

system selects variables in nonlinear functional form

for design variables so that the simultaneous equations

may become linear.

Numerical Solution

If appropriate values are assigned to the selected
design variables, the set of equations can be solved.
Because the functional matrix represents the equation
set itself, it can be directly used for equation-solving.

An equation which contains only one variable is
solved simply by applying the inverse function. The
determined variable is immediately changed into a
constant, with the functional matrix being accordingly
modified. Thus, the equations that can be solved se-
quentially are'solved in such an analytical manner. [f
an output variable involves multiple roots, its lower
and upper bounds are needed.

Because the functional matrix contains defined
functiopal forms only, the equation-solving system
knows the derivatives. Thus, the elements of the Jaco-
bian matrix are evaluated analytically [13]. Therefore,
the Newton-Raphson method can efficientlv solve the
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Get equations
Set functional matrix
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Rearrange matrix
Select design variables
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[ Put mformatlon ]

|
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Get values of design variables and
data for numerical solution

i
Solve equations
Put solution

Fig. 3. Schematic diagram of equation-solving system.

nonlinear simultaneous equations.
Equation-Solving System

Fig. 3 represents the equation-solving system deve-
loped in this work. The steps enclosed with dashed
lines in that figure are not currently contained in the
system. The equation-solving step uses the Harwell
subroutine libray to inverse the matrix.

A CASE STUDY

Modeling

A hypothetical process shown in Fig. 4, which was
used by Evans [16] for an example of process analysis
in the sequential modular approach, is to be treated as
an example. The reactor is an isothermal CSTR, and
the separator is an adiabatic flash drum. The liquid
phase reactions in the CSTR are described on Table 2,
and the physical properties of the components are
listed on Table 3. Equations which simply model the
CSTR-flash process neglecting the pump and the valve
are listed on Table 4, and their variables on Table 5.
The equation set has 8 degrees of freedom.
Design

A design problem of obtaining the product purity of
0.95, which gives 32 nonlinear simultaneous equa-
tions, was solved efficiently. If the sequential modular
approach were used, this problem would require time-
consuming iterative simulations. The result is on Table
6, where underlined numbers represent given values.
The purge fraction of the splitter must be set to 0.204,
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Table 3. Physical properties of components in CSTR-

\ iﬁr’dua flash process [16).
I |II 1 1
| I". [ 3 :____I . Physical property Component
1 2 7 rrve | |Flash A B c
— _— oo Valve | iasl
Feed P o — £ ;, kg-mole/m3 10.69 10.69 10.69
Ixe £
Mixer| ~ Pump Keactor S S A, k) lkg-mole 40890 37560 42010
d e [—é’T;;j Ci kJ/(kg-mole °K) 1658 1695  191.6
phatlier |
A, 1315 1219  13.77
Fig. 4. | . .
ig. 4. CSTR-flash process [16) B,, °K 5634 4272 6023

Table 2. Reactions in CSTR-flash process [16] if the other units are to be unchanged.

Number Reaction Order Optimization
; In the above example, all the 8 design variables
1 A (feed) ~ B (producy) First were selected by the designer. However, the known
2 B(product)  ~ C(by-product)  Second variables are just the two of x,;=1 and xg =0. If the
2;=0.1269 x 1012 hr~1 E,/R=9944 °K othgr 6 design variables are se‘lecte‘d by thg equation-
solving system, the set of equations is partitioned more
effectively than in the above example. The rearranged

a,=0.1921 x 108m3/(kg-mole hr) E3/R=6617 °K

Table 4. Model equations for CSTR-flash process [16].

Equation ) Number Equation Number
Xqp+xg +xc1=1 1 X45+%Xg5+Xcs=1 25
F|+F;-Fy=0 2 Ty-T5=0 26
X41F ) +x47F7-x40F5=0 3 InPy+B,/Ty=A, 27
XpF i+ xgF7—xpFe=0 4 vasPrxa5P4=0 28
Xc1F1 + xeiF7-xcoF2=0 5 In Pg+Bg/Ty=Ag 29
%2104 +x5:Cp+x01Cc-21 =0 6 yBsPrxpsPc=0 30
%47C4 + B,Cp+ xc7C-22=0 7 in Pe+Be/Ty=Ac 31
X42C 1 +XgsC1+xC-23=0 3 vesPrxcsPe=0 32
Fi2, T+ FpzyT7-Fyz3T3 =0 9 Y44sCa+YpiCr+ysCo29=0 33
Fy-F3=0 10 29Ts+ Y asha+ Yparg+yeshe2i0=0 34
Taz,=1 11 X45C4 +xpsCp+X5Cr-21, =0 35
exp(-(E/R)zy)-25=0 12 %43C4 +Xg3Cp+x3Cc-212=0 36
8, F3-a, pp\ gz5=0 13 Fyz1g+F521;T5~F322T3=0 37
exp[Eq/R)z4) -2 =0 14 {F;-Fg=0 33
0,F 52, 042V pizg =0 15 23+ fs=1 39
28y =1 16 215F5-F7=0 10
XA:;ZZT‘\:AL’:O 17 X45-X46=0 11
Xpy-Zg=0 18 Xa6-X47=0 42
O2g+Xp3-01X43-Xpp =0 19 Xps-Xgg="0 43
Xq3+Xg3+Xc3=1 20 Xgg-xg7=0 44
VYasFs+x45F5-x43F3=0 21 Xe5-Xeg=0 45
YpaF 3+ xpsF5-xp3F3=0 22 Xeg-Xe7=0 16
VedFy+xesFs-x3F3=0 23 T5-Tg=0 47
YagtVB+¥ea=1 24 Ts-T7=0 48

Korean J. Ch. E. (Vol. 4, No. 2)
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Fig. 5. Rearranged matrix of CSTR-flash process.

matrix is shown in Fig. 5, where letter ‘D’s on'the top
line represent the selected design variables.

The process optimization is performed by deter-
mining the solution which minimizes or maximizes an
appropriate objective function. As the equation-solving
is repeated, the selected 6 design variables are ad-
justed by some of control strategies such as the stee-
pest descent or ascent method, the pattern search, etc.

DISCUSSION

The functional matrix was found to be a versatile
tool for treating a large number of equations. However,
the consiraint on the functional form causes the in-
crease in the number of equations. Shacham [17]
states that the computational difficulty can be reduced
by changing nonlinear equations into linear ones and
additional nonlinear ones and applying appropriate
tearing. However, the convergence rate is not so im-
portant. The increase in the size of equation set is a
burden to equation-solving.

The structure of the functional matrix can be im-
proved so that any type of equation can be stored. In
that case, however, analytical evaluation of Jacobian
matrix will become much more difficult. The algori-
thm given by Book and Ramirez [12] checks the
multiplicity of the root of the variable which appears in
only one equation, while ordering equaticns, and if
that output variable involves multiple roots, searches
for a set of linear simultaneous equations which can
replace that output variable. This strategy involves a
combinatorial problem.

If the above-mentioned search is done, the equa-
tion which has the output variable involving multiple
roots must enter into the set of linear simultaneous
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Table 5. Variables for CSTR-flash process.

Vari- Number Vari- Number Vari- Number

able able able

X1 1 xg 21" P, 41
Xp 2 Fi 22 Py 42
X¢1 3 F, 23 P, 43
X402 4 Fs 24 z, 44
Xpo 5 F, 25 zZy 45
X9 6 Fs 26 g 46
X43 7 Fs 27 Zy 47
Xp3 8 F; 28 zZ5 48
X 9 T 29z 49
Va4 10 T, 30 z7 50
YB4 11 T, 3 zg 3
Yca 12 T, 32 Zg 52
X g5 13 Ts 33 Zy 53
Xps 14 Ty 34 z)1 54
Xcs 15 T, 35 Zyg 35
X456 16 Ve 36 23 36
Xpg 17 Pr 37

Xce 18 fg 33

X47 19 1 39

Xp7 20 2 40

equations, making that variable become a design vari-
able. Otherwise, that variable persists as an output
variable. Therefore, it makes the same effect avoiding
the combinatorial problem to order equations ignoring
the functional form first and then select design vari-
ables properly.

Some optimal design varizble selection may assem-
ble several contiguous partitions into one large linear

Table 6. Design of CSTR-flash process.

Unit Specification
Reactor Volume =0.283 m?3 Temperature =
Separator  Pressure=1 atm 478 °K
Splitter Purge fraction = 0.204

Flow rate Temper- Composition
Stream kg-mole/hr ature °K A B C
Feed 45.4 298 1 0 0
Reactor

76.1 478  0.1217 0.7215 0.1568

output
Product 37.5 370  0.0267 0.95  0.0233
Recycle 30.7 370 0.2140 0.4994 0.2865
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partition. However, the detection of such a situation in-
volves another combinatorial problem. The current
equation-solving system can not overcome the boun-
daries of partitions, but gives the best results in most
cases.

In the case study, each initial guess value for solu-
tion of nonlinear simultaneous equations had to be at
least of the same order of magnitude as that of the
solution. Unless a numerical method which is not sen-
sitive to the initial guess or a system which gives the
initial guess is developed, the equation-based analysis
of large chemical processes will be very difficult. When
the iterative solution converged, the CPU time re-
quired to read, rearrange and solve the equations
listed on Table 4 was less than 5 seconds on VAX-
11/750.

CONCLUSION

A new type of equation-solving system using the
functional matrix was developed and tested in this
work. The methodology given here was found to be an
appropriate basis for the equation-based analysis of
large chemical processes.

Any of currently useful equation-solving methods
such as Newton-Raphson method, Broyden-Schubert
methcd, etc. can not easily give the solution of large
systems of highly nonlinear equations. The develop-
ment of methods for efficient equation-so:ving has
almost always depended on the improvement in
numerical methods. The real bottleneck in the equa-
tion-solving procedure is the step of initial guess. If the
human work in trial-and-error fashion can be perform-
ed by a system of artificial intelligence, the equation-
solving system connected to the Al production system
wil, be much more powerful than any one that has
ever existed.

It is possible to develop a system which generates
model equations for a given flowsheet. The equation-
generating system which uses simple models and the
equation-solving system which efficiently treats large
systems of algebraic equations will make the equation-
based analysis of large chemical processes feasible.
The detailed optimization can be based on the sequen-
tial modular approach using the results obtained by
the equation-based approach.

NOMENCLATURE

A, : coefficient in vapor p essure correlation for com-
ponent i

a, : frequency factor of reaction n, hr”
mole hr)

B, : coefficient in vapor pressure correlation for com-

Y or m¥/(kg-

ponent i, °K

C, - heal capacity of component i in liquid phase,
kJ/(kg-mole °K)

E, : activation energy of reaction n, kJ/kg-mole

F. : flow rate of stream j, kg-mole/hr

f, : purge fraction of unit k

P, . vapor pressure of component i, atm

P, . pressure in unit k, atm

R : gas constant, kJ/(kg-mole °K)

T, : temperature of stream j, °K

V, : volume of unit k, m*

%, : mole fraction of component i in liquid phase in
stream j

y; © mole fraction of component i in vapor phase in
stream |

z, . substitution variable

Greek Letters

g, . substitution variable

Ai ¢ heat of vaporization of component i, kJ/kg-mole

p; . density of component i in liquid phase, kg-
mole/m?

¢, : density of fluid in unit k, kg—mole/m3
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