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Abstract--The equation-based approach to process analysis is necessary for efficient optimization of 
large and complex processes, and involves the problem of solving a large number of equations. To comple- 
ment this approach, an improved equation-solving system using the functional matrix suggested by Mattione, 
Meir and Book was developed, and its capacity for the process analysis was demonstrated by case studies. 

The equation-solving system developed in this work reads equations, stores them in the functional 
matrix, rearranges them, and, if they have degrees of freedom, selects design variables which make each par- 
tition the easiest to solve. Given the values of the design variables, the system solves the equations as it mani- 
pulates the functional matrix. 

The developed equation-solving system was proved ro be efficient for solving a large number of equations 
which involve degrees of freedom. Case studies show that the methodology established in this work is art 
appropriate basis for the equation-based analysis of large chemical processes. 

INTRODUCTION 

The most promising approach to process analysis is 
the two tier approach, in which the equation-based ap- 
proach with simple models and the sequential modu- 
lar approach with rigorous models are used together. 
This approach was represented by Rosen [1], Evans 
[2], e ta ] .  The objective of this study is to present a 
computational basis for the equation-based analysis in 
the two tier approach. 

One of the most important jobs [n chemicai process 
design is solving large sets of process-modeling equa- 
tions. The set of equations to be solved usually consists 
of both linear and nonlinear equations, and is very 
sparse when represented in matrix form. The totaJ 
system of equations, if possible, must be partitioned 
into subsystems of equations so that the computational 
difficulty in equation-solving may be minimized. 

Algorithms for partitioning systems with no de- 
grees of freedom were given by Steward [3] [4], Sar- 
gent and Westerberg [5], HimmeIblau [6], Tarjan [7], 
et al. Results of these algorithms are the same, i-e. they 
give the complete partitions. 

A set of equations modeling a process always con- 
tains more variables than equations. It is a very impor- 

rant problem which variables to set to constants, 
because the configuration of the partitioned set of 
equations with zero degree of freedom may critically 
vary with the set of design variables. A]gorith:ms for 
rearranging equations and selecting design va.riables 
were given by Lee, Christensen and Rudd [8], Edie 
and Westerberg [9], Ramirez and Vestal [10], Book 
and Ramirez [11] [12], et al. 

In previous work, the occurrence matrix in which 
an element represents just the occurrence of a variable 
in an equation was being used in order to express the 
structure of a set of equations. Then, Mattione, Meir 
and Book [13] presented a type of occurrence matrix, 
called the functional matrix, in which an element 
represents not o~fly the occurrence but also the func- 
tional form of a variable in an equation. Book and 
Ramirez [12] made use of the functional matrix in 
their equation-ordering and variable-grouping algo- 
rithm. 

After partitioning, the tearing, which is another 
method for reducing the computational difficulty, can 
be applied to each partition, so that the solution of sub- 
systems of equations can be iterated. Algorithms for 
tearing were give[r by Steward [2], Christensen [i4], et 
a]., but not discussed here. 
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Table I. Defined functional forms. 

Desig- Functional form Equation form 
nation 

A Linear ClX 1 + fix) = 0 

B Product Clxlx2---x n + f(x) = 0 

D Reciprocal Cl/(X 1 + C2) + f(x) = 0 

E Exponential Clex p (C2Xl) + fix) = 0 

G Hyperbolic tangent Cltanh (x t + C2) + f(x) = 0 

H Hyperbolic sine Clsinh (x 1 + C2) + f(x) = 0 

L Natural logarithm Clln (x 1 + C2) + f(x) = 0 

M Common logarithm Cllog (x I + C2) + fOc) = 0 

N Cubic C l (x t + C2) a + f(x) = 0 

O Square root Clx 1 + C 2 + fix) = 0 

P Power ClXlC 2 + f(x) = 0 

R Fourth order C 1 (x 1 + C2) 4 4 f0c) = 0 

S Square C 1 (x 1 + C2) 2 § fix) = 0 

T Tangent Cltan (x 1 + C 2) + f(x) = 0 

U Sine Clsin (x 1 + C 2) + f(x) = 0 

V Cosine Clcos (x I + C 2) + fix) = 0 

W Hyperbolic cosine Clcosh (x 1 + C~) + fix) = 0 

EQUATION-SOLVING METHODOLOGY 

Funct iona l  Matrix 
An element of the functional matrix represents the 

function formed by a variable in an equation. The fun- 
ctional form which can appear in an equation is de- 
fined as shown in Table 1, where f(x) is a function of 
variables other than explicit ones in the equation. An 
element which is designated by a letter after 'p' in- 
volves multiple roots. 

The row-oriented column-linked list is used in 
order to store the functional matrix. Elements in the 
topmost row are stored contiguously in the memory in 
the increasing order of their column numbers,  and 
those in the next row, etc. Elements in each column 
are linked from top to bottom. A record for an element 
node contains fields for the code representing 'he fun~> 
tional form and the constants specifying the function, 
as shown in Fig. 1. Fields for the mark and ~he Jaco- 
bian matrix are used only while the functional matrix 
is being used for equation-solving. 

A type of circular list is used in order to express the 
product of variables. The code is used as the link. If the 
value of code of an element is positive, it corresponds 
to the element number  of the multiplied variable. The 
code of the multiplied element is the element number  
of the next multiplied variable, etc. The code of the last 
multiplied element is the element number  of the first 

Fig. 1. Contents of an element node. 

variable in the product, so the elements are circularly 
linked. The product is evaluated by tracing the link 
with the visited nodes being marked. 

Functional forms other than the product ,of vari- 
ables are represented by nonpositive code values. Fig. 
2 shows an example of the functional matrix, which 
contains the same equations that were used for' an ex- 
ample by Mattione, Meier and Book [13]. 
Equat ion -Order ing  a n d  P a r t i t i o n i n g  

An equation which contains only one variable can 
be solved first. Therefore, such an equation is put to 
the topmost row, and its variable is put to the !eftmost 
column. Then, its row and column are eliminated 
from the original matrix. The same work is repeated 
until such an equation is not found. 

If a variable appears in only one equation, the 
equation which contains that variable can be solved 
after all the other equations are solved. Therefore, 
such an equation is put to the bottommost row, and 
such a variable is put to the rightmost column. Then, 
the row of that equation and the column of that vari- 
able are eliminated from the original matrix. The same 
work is repeated until such a variable is not found. 

If there are remaining equations in the original 
matrix, the equation with the minimum number  of 
variables is put to the topmost empty row [15]. If there 
are several candidates, the one with which the max- 
imum number  of elements are to be eliminated is sele- 
cted. Then, its original row and columns are elimi- 
nated. The same work is repeated for the remaining 

Row Eq 

Equation Number 

x 4 + X6X3-3 x2x  5 = 7 5 

4 In X3-2 X 5 4.5 = 0 3 

Col Var Eq Row Const Var Col 

I 5 i 4 1 i 
2 3 2 6 2 2 4 
3 3 3 3 3 3 
4 4 2 4 2 0 4 i 
5 5 5 5 1 7 5 5, 
6 6 6 6 2 

! Column pointer | 

 owpointer 

Fig. 2. Structure of the functional matrix. 
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equations. This is a heuristic methotl which does not 
guarantee the most small-sized partitions, and is a sim- 
ple method which does not involve any serious combi- 
natorial problem. 

After all the equations are ordered, the rearranged 
matrix is partitioned. Conventionally, the partition is 
defined as the smallest subsystem of equations. Here, 
contiguous unit partitions are so assembled that they 
compose a trapezoid or triangular partition as shown 
in Fig. 5. The size of partition is defined as the number 
of equations that must be solved simultaneously in the 
partition. 
Design Variable Selection 

After partitions are determined, proper design vari- 
ables are selected so that each partition with degrees of 
freedom may become the easiest to solve. In previous 
work using the occurreflce matrix, any situation that 
all the' equations can be solved sequentially was the 
most preferred one. Here, an objective function to be 
minimized is used, which was used by Book and 
Ramirez [12] during the equation-ordering. It is as 
follows. 
1. Equations that can be solved sequentially giving a 

single root vector 
2. Linear simultaneous equations 
3. Equations that can be solved sequentially giving 

multiple root vectors 
4. Nonlinear simultaneous equations 
The equation-solving system selects outpul variables 
involving multiple roots in a trapezoid partition for 
design variables, if that selection gives a set of linear 
simultaneous equations. If there is a partition of simul- 
taneous equations with some degrees of freedom, the 
system selects variables in nonlinear functional form 
for design variables so that the simultaneous equations 
may become linear. 
Numerical Solution 

If appropriate values are assigned to the selected 
design variables, the set of equations can be solved. 
Because the functional matrix represents the equation 
set itself, it can be directly used for equation-solving. 

An equation which contains only one variable is 
solved simply by applying the inverse function. The 
determined variable is immediately changed into a 
constant, with the functional matrix being accordingly 
modified. Thus, the equations that can be solved se- 
quentially are'solved in such an analytical manner. If 
an output variable involves multiple roots, its lower 
and upper bounds are needed. 

Because the functional matrix contains defined 
functioBal forms only, the equation-solving system 
knows the derivatives. Thus, the elements of the Jaco- 
bian matrix are evaluated analytically [13]. Therefore, 
the Newton-Raphson method can efficiently solve the 

Get equations 
Set fimctional matrix 

1 "- 

L Rearrange matrix 
. .  Select design variables 

[ -  . . . . . . . . . . . . . . .  .1 [  . . . . . . . . . . . . .  

i Eliminate columns of design variables - -1 
t 

I Partition completely each square partition , 
. . . . . . . . . . . . . . .  " ] l  . . . . . . . . . . . . . . . .  J 

[ Put information ] 
l" 

Get values of design variables and 
data for numerical solution 

t 
Solve equations 

Put solution I ! 

' l No 
_• 

__ Optimum achieved? . . . .  
~ = : = 2 -  _ . . . . .  Y e ~ -  . . . . . .  - "  

Fig. 3. Schematic diagram of equation-solving system. 

nonlinear simultaneous equations. 
Equation-Solving System 

Fig. 3 represents the equation-solving system deve- 
loped in this work. The steps enclosed with dashed 
lines in that figure are not currently contained in the 
system. The equation-solving step uses the Harwell 
subroutine libray to inverse the matrix. 

A CASE STUDY 

Modeling 
A hypothetical process shown in Fig. 4, which was 

used by Evans [16] for an example of process analysis 
in the sequential modular approach, is to be treated as 
an example. The reactor is an isothermal CSTR, and 
the separator is an adiabatic flash drum. The liquid 
phase reactions in the CSTR are described on Table 2, 
and the physical properties of the componenLs are 
listed on Table 3. Equations which simply model the 
CSTR-flash process neglecting the pump and the valve 
are listed on Table 4, and their variables on Table 5. 
The equation set has 8 degrees of freedom. 
Design 

A design problem of obtaining the product purity of 
0.95, which gives 32 nonlinear simultaneous equa- 
tions, was solved efficiently. If the sequential modular 
approach were used, this problem would require time- 
consuming iterative simulations. The result is on Table 
6, where underlined numbers represent given values. 
The purge fraction of the splitter must be set to 0.204, 
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1 !  [z 3>v I 
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7 ' , 6 Split er{__A"leaa 
Fig. 4. CSTR-flash process [16]. 

Table 3. Physical propert ies  of components  in CSTR- 

flash process [16]. 

Physical property Component 
A B C 

P i, kg m ~  10.69 10.69 10.69 

A i, kJ/kg-mote 40890 37560 42',010 

C i, kJ/(kg-mole ~ 165.8 169.5 l q l . 6  

A ,. 13,15 12,19 13.77 

B,, ~ 5634 4272 6023 

Table 2. Reactions in CSTR-flash process [16]. 

Number Reaction Order 

1 A (feed) ~ B (product) First 

2 B (product) --* C (by-product) Second 

a 1 =0.1269 x 10 t2 hr q E l / R = 9 9 4 4  ~  

a2=0.1921 x 106ma/(kg-mole hr) E2 /R=6617  ~ 

if the other  units are to be unchanged.  
O p t i m i z a t i o n  

In the above example,  all the 8 design variables 
were  selected by the designer.  ,However, the known  

variables are just the two of XA~= 1 and x m = 0 .  If the 
o ther  6 design variables are selected by the equation- 
solving system, the set of equat ions  is parti t ioned more  
effectively than in the above example.  The rearranged 

Table 4. Model equations for CSTR-flash process [161. 

Equation Number Equation Number 

XA 1 t XB1 ~- XC1 = 1 1 XA5 + XB5 + XC5 = 1 25 

F I + F z - F  2=0 2 T 4-T 5=0 26 

XA1F 1 + xA7FT-xA2F2 =0 3 In PA + BA/T4=AA 27 

XB1F 1 + XB7,FT-xB2F2 = 0 4 YA4PF-XA5PA = 0 28 

xc lF  1 + XcTF7-xczF2 = 0 5 In PB + BB/T4 = AB 29 

XA1C A + XB.C B + x c 1 C c - z l  = 0 6 yB4PF-xBsPc" = 0 30 

XA7C A + BTC B + xcTCc-z  2 = 0 7 in PC + BC ! T4 = A c  31 

xA2CA + X~CB + xc~Cc-z3 = 0 8 Yc4PF-xcsP c = 0 32 

F lz lT  1 + FrzzTT-F2z3T 2 = 0 9 YA4CA + YB4CB + Yc4Cc-z9 = 0 33 

F 2- F 3 = 0 10 z9T4 + YA4J-A + YB4~.B + Y(-'4~.c-Z10 = 0 34 

T3z 4 = 1 11 XA5C A -t- XB5C B + xc5Cc-Z l l  = 0 35 

exp [ (E 1 / R)z4]-z 5 = 0 12 xA3C A + xmC B + xc3Cc-zt2 = 0 36 

01F' 3 a 1 ORVRZ 5 = 0 13 F4Zl0 + F5ZllTs-F3zl2T 3 =0 37 

exp[ (E2/R)z4] z6=0 14 f sFs -F6=0  38 

02F3- a2 oRZVRz6 = 0 15 z 13 - fs = 1 39 

zT- 01 = 1 t6 z13Fs-F 7 = 0 40 

Xa32Z7 XA2 = 0 17 XAS-XA6 = 0 41 

XB~ ;-z 8 = 0 18 XA6-XA7 = 0 42 

02z 8 + XB3 -0 lXA3-XB2 = 0 19 XB5-XB6 = 0 43 

XA3 + XB3 + XC3 = 1 20 XB6-XB7 = 0 44 

YA4F4 + XAsF5-xA3F 3 = 0 21 Xc5-Xca = 0 45 

YB4F4 + xBsF 5-xB3F3 = 0 22 xc6-xc7 = 0 46 

Yc4F4 ~- xc.sF 5 -xc3F 3 = 0 23 T 5 - T 6  = 0 47 

YA4 * YB4 + YC4 = 1 24 T 6 - T 7  = 0 48 

Korean J. Ch. E. (Vol. 4, No. 2) 
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Fig. 5. Rearranged matrix of CSTR-flash process. 

matrix is shown in Fig. 5, where letter 'D's o n  the top 
line represent the selected design variables. 

The process optimization is performed by deter-. 
mining the solution which minimizes or maximizes an 
appropriate objective function. As the equation-solving 
is repeated, the selected 6 design variables are ad- 
justed by some of control strategies such as the stee- 
pest descent or ascent method, the pattern search, etc. 

DISCUSSION 

The functional matrix was found to be a versatile 
tool for treating a large number  of equations. However, 
the constraint on the functional form causes the in- 
crease in the number  of equations. Shacham [17] 
states that the computational difficulty can be reduced 
by changing nonlinear equations into linear ones and 
addit ional  nonlinear ones and applying appropriate 
tearing. However, the convergence rate is not so im- 
portant. The increase in the size of equation set is a 
burden to equation-solving. 

The structure of the functional matrix (:an be im- 
proved so that any type of equation can be stored. In 
that case, however, analytical evaluation of Jacobian 
matrix will become much more difficult. "]:'he algori- 
thm given by Book and Ramirez [12] checks the 
multiplicity of the root of the variable which appears in 
only one equation, while ordering equations, and if 
that output variable involves multiple roots, searches 
for a set of linear simultaneous equations which can 
replace that output variable. This strategy involves a 
combinatorial problem. 

If the above-mentioned search is done, the equa- 
tion which has the output variable involving multiple 
roots must enter into the set of linear simultaneous 

Table 5. Variables for CSTR-flash process. 

Vari- Number Vari- Number Vari- Number 

able able able 

XA1 1 xc7 21" PA 41 

x m 2 F 1 22 PB 42 

Xc1 3 F 2 23 PC 43 

xA2 4 F 3 24 z 1 44 

XB2 5 F 4 25 z 2 4,5 

xc- 2 6 F 5 26 z 3 46 

XA3 7 F 6 27 z 4 47 

XB3 8 F 7 28 z 5 4-8 

Xc3 9 T 1 29 z 6 4,9 

YA4 1 0  T 2 3 0  z 7 50 

YB4 11 T 3 31 z 8 51 

Yc4 12 T 4 32 z 9 52 

XA5 13 T 5 33 zl0 53 

XB5 14 T 6 34 Zll 54 

xc5 15 T? 35 z12 55 

XA6 16 V R 36 z13 56 

XB6 17 PF 37 

Xc6 18 fs 38 

XA7 19 1 39 

XB7 20 2 40 

equations, making that variable become a design vari- 
able. Otherwise, that variable persists as an output 
variable. Therefore, it makes the same effect avoiding 
the combinatorial problem to order equations ignoring 
the functional form first and then select design vari- 
ables properly. 

Some optimal design variable selection may assem- 
ble several contiguous partitions into one large linear 

Table 6. Design of CSTR-Ilas5 process. 

U nit Specification 

Reactor Volume = 0.283 m a Temperalure = 

Separator Pressure = 1 atm 478 ~ 

Splitter Purge fraction = 0.204 

Flow rate Temper- Composition. 
Stream kg-mole/hr ature ~ A B C 

Feed 45.4 

Reactor 
76.1 

output 

Product 37.5 

Recycle 30.7 

298 1 0 0 

478 0.1217 0.7215 0.1568 

370 0.0267 0.95 0.0233 

370 0.2140 0.4994 0.2865 
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partition. However, the detection of such a situation in- 
volves another combinatorial problem. The current 
equation-solving system can not overcome the boun- 
daries of partitions, but gives the best results in most 
cases. 

In the case study, each initial guess value for solu- 
tion of nonlinear simultaneous equations had to be at 
least of the same order of magnitude as that of the 
solution. Unless a numerical method which is not sen- 
sitive to the initial guess or a system which gives the 
initial guess is developed, the equation-based analysis 
of large chemical processes will be very difficalt. When 
the iterative solution converged, the CPU time re- 
quired to read, rearrange and solve the equations 
listed on Table 4 was less than 5 seconds on VAX- 
11/750. 

CONCLUSION 

A new type of equation-solving system using the 
functional matrix was developed and tested in this 
work, The methodology given here was found to be an 
appropriate basis for the equation-based analysis of 
large chemical processes, 

Any of currently useful equation-solving methods 
such as Newton-Raphson method, Broyden-Schubert 
method, etc. can not easily give the solution of large 
systems of highly nonlinear equations. The develop- 
ment of methods for efficient equation-so:ving has 
almost always depended on the improwement in 
numerical methods. The real bottleneck in the equa- 
tion-solving procedure is the step of initial guess. If the 
human work in trial-and-error fashion can be perform- 
ed by a system of artificial intelligence, the equation- 
solving system connected to the AI production system 
wiL be much more powerful than any one that has 
ever existed. 

It is possible to develop a system which generates 
model equations for a given flowsheet. The equation- 
generating system which uses simple models and the 
equation-solving system which efficiently treats large 
systems of algebraic equations will make the equation- 
based analysis of large chemical processes, feasible. 
The detailed optimization can be based on the sequen- 
tial modular approach using the results obtained by 
the equation-based approach. 

NOMENCLATURE 

A~ : coefficient in vapor F essure correlation for com- 
ponent i 

a,, : frequency factor of reaction n, hr q or m3/(kg - 
mole hr) 

B, : coefficient in vapor pressure correlation for corn- 

Ci 

E n 

f~ 
Pi 
Pk 
R 

Vk 
Xq 

Y# 

Z n 

ponent i, ~ 
heat capacity of component i in liquid pease, 
kJ/(kg-mole ~ 
activation energy of reaction n, kJ/kg-mole 
flow rate of stream j, kg-mole/hr 
purge fraction of unit k 
vapor pressure of component i, atm 
pressure in unit k, arm 
gas constant, kJ/(kg-mole ~ 
temperature of stream j, ~ 
volume of unit k, m 3 
mole fraction of component i in liquid phase in 
stream j 

: mole fraction of component i in vapor phase in 
stream j 

: substitution variable 

Greek  Letters  
0,, substitution variable 
,~ heat of vaporization of component i, kJ/kg-mole 
Pi density of component i in liquid phase, kg- 

mole/m 3 
p~ density of fluid in unit k, kg-mole/m 3 
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